Relative Reconstruction Improvement (RRI) Theory

The RRI metric introduced by VIN-NBV, quantifies the expected reconstruction quality gain from capturing a new viewpoint:

\[\text{RRI}(\mathbf{q}) = \frac{\text{d}(\mathcal{P}_t, \mathcal{M}_{\text{GT}}) - \text{d}(\mathcal{P}_{t \cup \mathbf{q}}, \mathcal{M}_{\text{GT}})}{\text{d}(\mathcal{P}_t, \mathcal{M}_{\text{GT}})}\]

Where:

Properties:

Issues:

For more information on surface reconstruction metrics, see Surface Reconstruction Metrics.

1 NBV Task Formulation using RRI

Input:

  • Current partial reconstruction \(\mathcal{P}_t\) from \(t\) captured views
  • Set of candidate viewpoints at time \(t\): \(\mathcal{Q}_t = \{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_n\}\)
  • Current camera trajectory \(\mathcal{T}_t = \{\mathbf{c}_1, \mathbf{c}_2, ..., \mathbf{c}_t\}\)

Objective: Find the next-best viewpoint that maximizes reconstruction improvement:

\[\mathbf{q}^* = \underset{\mathbf{q} \in \mathcal{Q}_t}{\text{argmax}} \; \text{RRI}(\mathbf{q} \mid \mathcal{P}_t, \mathcal{T}_t)\]

Sequential Planning: For planning a sequence of \(k\) views, the optimal camera trajectory \(\boldsymbol{\tau}^*_{t+k} = \{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_k\}\) is:

\[\boldsymbol{\tau}^*_{t+k} = \underset{\boldsymbol{\tau}_{t+k}}{\text{argmax}} \sum_{i=1}^{k} \text{RRI}(\mathbf{q}_i \mid \mathcal{P}_{t+i-1}, \boldsymbol{\tau}_{t+i-1})\]

Subject to:

  • Collision constraints: \(\mathbf{q} \notin \mathcal{O}_{\text{occupied}}\) (candidate poses must be in free space)
  • Kinematic constraints: \(\|\text{pos}(\mathbf{q}_i) - \text{pos}(\mathbf{q}_{i-1})\| \leq d_{\max}\) (reachability limits)
  • Field-of-view constraints: \(\mathcal{V}(\mathbf{q}) \cap \mathcal{S} \neq \emptyset\) (scene entities \(\mathcal{S}\) must be visible from frustum \(\mathcal{V}(\mathbf{q})\))
  • Resource constraints: Total trajectory length, time, or number of views within budget